

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМСКИЙ ИНЖЕНЕРНО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» (АНО ВО «КИТ Университет»)

ОДОБРЕНА заседанием Ученого совета Протокол № 4 от 30.05.2022 УТВЕРЖДАЮ Ректор_____ В.А. Никулин «30» мая 2022 г.

Физика

рабочая программа дисциплины (модуля)

Учебный план 08.03.01_2021-очн-3++.plx

08.03.01 Строительство

Квалификация Бакалавр

Форма обучения очная

Общая трудоемкость 12 ЗЕТ

Часов по учебному плану 432 Виды контроля в семестрах:

в том числе: экзамены 3, 2

аудиторные занятия 166,8 зачеты 1

 самостоятельная работа
 193,8

 часов на контроль
 71,4

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	1 (1.1)		2 (1.2)		3 (2.1)		Итого	
Недель	17	3/6	1	6	15	5/6		
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ	УП	РΠ
Лекции	18	18	32	32	16	16	66	66
Лабораторные	18	18	16	16	16	16	50	50
Практические	18	18	16	16	16	16	50	50
Контактная работа(аттестация)	0,2	0,2	0,3	0,3	0,3	0,3	0,8	0,8
В том числе инт.	4	4	4	4	4	4	12	12
Итого ауд.	54,2	54,2	64,3	64,3	48,3	48,3	166,8	166,8
Контактная работа	54,2	54,2	64,3	64,3	48,3	48,3	166,8	166,8
Сам. работа	89,8	89,8	44	44	60	60	193,8	193,8
Часы на контроль			35,7	35,7	35,7	35,7	71,4	71,4
Итого	144	144	144	144	144	144	432	432

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)							
1.1	Изучение основных физических явлений, фундаментальных понятий, законов и теории классической и современной физики, а также методов физического исследования;							
1.2	Обучение приемам и методам решения задач из различных областей естествознания; Формирование современного физического мышления и умения. Научиться решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук.							

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ								
П	Цикл (раздел) ОП:	Б1.О							
2.1	Требования к предварительной подготовке обучающегося:								
2.1.1	Знание физики в объеме	Знание физики в объеме средней школы							
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:								
2.2.1	Техническая механика								
2.2.2	Методы научных исслед	ований							
2.2.3	Основания и фундамент	ы							
	Основы архитектуры и с	строительных конструкций							

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-1: Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата

Индикатор достижения компетенции

- ОПК-1.1: Выявление и классификация физических и химических процессов, протекающих на объекте профессиональной деятельности
- ОПК-1.2: Определение характеристик физического процесса (явления), характерного для объектов профессиональной деятельности, на основе теоретического (экспериментального) исследования
- ОПК-1.4: Представление базовых для профессиональной сферы физических процессов и явлений в виде математического(их) уравнения(й)
- ОПК-1.5: Выбор базовых физических и химических законов для решения задач профессиональной деятельности
- ОПК-1.7: Решение уравнений, описывающих основные физические процессы, с применением методов линейной алгебры и математического анализа

В результате освоения дисциплины (модуля) обучающийся должен

3.1	Знать:
3.1.1	классификацию физических процессов, протекающих на объекте профессиональной деятельности ОПК-1.1
3.1.2	базовые для профессиональной сферы физических процессов и явлений в виде математического(их) уравнения(й) ОПК-1.4
3.2	Уметь:
3.2.1	определять характеристики физического процесса (явления), характерного для объектов профессиональной деятельности, на основе теоретического (экспериментального) исследования ОПК-1.2
3.2.2	выбирать базовые физических законы для решения задач профессиональной деятельности ОПК-1.5
3.2.3	решать уравнения, описывающих основные физические процессы, с применением методов линейной алгебры и математического анализа ОПК-1.7

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код занятия								
	Раздел 1. Механика и молекулярная физика							

1.1	Использование основных законов естественнонаучных дисциплин в профессиональной деятельности, применять методы математического (компьютерного) моделирования в области физики, теоретического и экспериментального исследования Тема 1. Кинематика Основные кинематические характеристики криволинейного движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.2	Кинематика материальной точки. /Пр/	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.3	Кинематика материальной точки. /Ср/	1	12	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.4	Тема 2. Динамика Инерциальные системы отсчета и первый закон Ньютона. Второй закон Ньютона. Масса, импульс, сила. Уравнение движения материальной точки. Третий закон Ньютона и закон сохранения импульса. Закон всемирного тяготения. Силы трения. /Лек/	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.5	Определение ускорения свободного падения с помощью математического маятника /Лаб/	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.6	Динамика материальной точки /Пр/	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.7	Динамика материальной точки /Cp/	1	12	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.8	Тема 3. Работа, энергия. Сила, работа и потенциальная энергия. Консервативные и неконсервативные силы. Работа и кинетическая энергия. Закон сохранения полной механической энергии в поле потенциальных сил.	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.9	Определение скорости снаряда с помощью физического маятника /Лаб/	1	6	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	2	

1.10	Законы сохранения в механике /Пр/	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.11	Законы сохранения в механике /Ср/	1	12	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.12	Тема 4. Вращательное движение твердого тела. Моменты импульса частицы относительно точки и оси. Момент силы. Уравнение моментов. Момент импульса твердого тела относительно неподвижной оси. Момент инерции. Теорема Штейнера. Основное уравнение динамики вращательного движения твердого тела с закрепленной осью вращения. Закон сохранения момента импульса. Кинетическая энергия вращающегося твердого тела. /Лек/	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.13	Проверка основного закона динамики вращательного движения твердого тела с помощью маятника Обербека /Лаб/	1	6	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.14	Вращательное движение твердого тела /Пр/	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.15	Вращательное движение твердого тела /Ср/	1	12	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.16	Тема 5. Физика газов. Основное уравнение молекулярно- кинетической теории для давления идеального газа. Средняя энергия молекулы. Физический смысл понятия температуры. Закон равнораспределения энергии по степеням свободы. Внутренняя энергия и теплоемкость идеального газа. Уравнение Клайперона- Менделеева. Изопроцессы. Уравнение Майера. Уравнение Пуассона.	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.17	Определение отношения теплоёмкостей воздуха методом адиабатического расширения. /Лаб/	1	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	2	
1.18	Молекулярно-кинетическая теория идеального газа. Газовые законы /Пр/	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	

1.19	Молекулярно-кинетическая теория идеального газа. Газовые законы /Cp/	1	9,8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.20	Тема 6. Элементы статистической физики. Распределение Максвелла. Средняя, среднеквадратичная и наивероятная скорости молекул. Распределение молекул во внешнем поле. Барометрическая формула. Распределение Больцмана. /Лек/	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.21	Элементы статистической физики /Пр/	1	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.22	Элементы статистической физики /Ср/	1	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.23	Основы термодинамики /Ср/	1	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.24	Механические колебания и волны /Ср/	1	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.25	Механика несжимаемой жидкости /Cp/	1	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
1.26	/Катт3/	1	0,2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
2.1	Раздел 2. Электричество Тема 9. Электростатическое поле в	2	8	ОПК-1.1	Л1.1Л2.1	0	
2.1	вакууме. Электрическое поле. Напряженность электрического поля. Теорема Гаусса и ее применение к расчету поля. Потенциал. Связь потенциала и напряженности поля. Проводники в электростатическом поле. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками. Электростатическая защита. Емкость проводников и конденсаторов. Энергия заряженного конденсатора.		0	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	U	
	/Лек/						

	1	T -	1	T		1	
2.2	Исследование электростатического	2	6	ОПК-1.1	Л1.1Л2.1	2	
	поля. Измерение электрического			ОПК-1.2	Л2.2Л3.1		
	сопротивления мостовым			ОПК-1.5	Л3.2 Л3.3		
	методом /Лаб/			ОПК-1.7	Л3.4		
					Э1		
2.3	Электростатическое поле в	2	14	ОПК-1.1	Л1.1Л2.1	0	
	вакууме /Ср/			ОПК-1.2	Л2.2Л3.1		
				ОПК-1.5	Л3.2 Л3.3		
				ОПК-1.7	Л3.4		
				01111 117	Э1		
2.4	Тема 10. Электрическое поле в	2	8	ОПК-1.1	Л1.1Л2.1	0	
2.4	диэлектрике.	2	0	ОПК-1.1	Л2.2Л3.1	U	
	Электрическое поле диполя. Диполь во			ОПК-1.5	Л3.2 Л3.3		
	внешнем электрическом поле.			ОПК-1.7	Л3.4		
	Поляризация диэлектриков.			O11K-1.7	Э1		
					31		
	Ориентационный и деформационный						
	механизмы поляризации. Вектор						
	электрического смещения						
	(электрической индукции).						
	Диэлектрическая проницаемость						
	вещества. Электрическое поле в						
	однородном диэлектрике. /Лек/						
2.5	Электростатическое поле в вакууме	2	4	ОПК-1.1	Л1.1Л2.1	0	
	Электрическое поле в диэлектрике			ОПК-1.2	Л2.2Л3.1		
	/Πp/			ОПК-1.5	Л3.2 Л3.3		
	1			ОПК-1.7	Л3.4		
					Э1		
2.6	Электростатическое поле в вакууме	2	8	ОПК-1.1	Л1.1Л2.1	0	
	Электрическое поле в диэлектрике	_		ОПК-1.2	Л2.2Л3.1		
	/Ср/			ОПК-1.5	Л3.2 Л3.3		
	/Cp/			ОПК-1.7	Л3.4		
				OTHE 1.7	Э1		
	Раздел 3. ЭЛЕКТРОМАГНЕТИЗМ						
				0774.4.4	71.170.1		
3.1	Тема 11. Постоянный электрический	2	8	ОПК-1.1	Л1.1Л2.1	0	
	ток и его законы.			ОПК-1.2	Л2.2Л3.1		
	Сила и плотность тока. Уравнение			ОПК-1.5	Л3.2 Л3.3		
	непрерывности для плотности тока.			ОПК-1.7	Л3.4		
	Закон Ома в интегральной и				Э1		
	дифференциальной формах. Закон						
	Джоуля-Ленца. Электродвижущая сила						
	источника тока. Правила Кирхгофа.						
	/Лек/						
3.2	Правила Кирхгофа. /Лаб/	2	6	ОПК-1.1	Л1.1Л2.1	2	
				ОПК-1.2	Л2.2Л3.1		
				ОПК-1.5	Л3.2 Л3.3		
				ОПК-1.7	Л3.4		
					Э1		
3.3	Постоянный электрический ток и его	2	6	ОПК-1.1	Л1.1Л2.1	0	
3.3			0	ОПК-1.1	Л1.1Л2.1 Л2.2Л3.1	U	
	законы /Пр/			OΠK-1.2 ΟΠK-1.5			
					Л3.2 Л3.3		
				ОПК-1.7	Л3.4		
					Э1		
3.4	Постоянный электрический ток и его	2	10	ОПК-1.1	Л1.1Л2.1	0	
	законы /Ср/			ОПК-1.2	Л2.2Л3.1		
				ОПК-1.5	Л3.2 Л3.3		
				ОПК-1.7	Л3.4		
					Э1		
1		1	1	l .		1	

3.5	Тема 12. Магнитное поле в вакууме. Сила Лоренца. Магнитная индукция В. Закон Био-Савара и его применение к расчету магнитного поля прямого и кругового токов. Теорема о циркуляции вектора В. Поле соленоида. Закон Ампера. Магнитный момент контура с током. Сила и момент сил, действующих на контур с током в магнитном поле. Магнитный поток. Работа магнитного поля при перемещении контура с током. /Лек/	2	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.6	Магнитное поле в вакууме /Пр/	2	6	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.7	Магнитное поле в вакууме /Cp/	2	12	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.8	Защита лабораторных работ /Лаб/	2	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.9	/КаттЭ/	2	0,3	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.10	/Экзамен/	2	35,7	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.11	Магнитное поле в веществе /Пр/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.12	Магнитное поле в веществе /Ср/	3	12	ОПК-1.1 ОПК-1.2 ОПК-1.4 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
3.13	Электромагнитная индукция Электромагнитные колебания и волны /Ср/	3	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
· <u> </u>	Раздел 4. КОЛЕБАНИЯ И ВОЛНЫ						
4.1	Уравнения Максвелла /Лек/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
4.2	Уравнения Максвелла /Пр/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	

4.3	Проверка закона Ома в цепях переменного тока /Лаб/	3	6	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	2	
4.4	Определение главных фокусных расстояний собирающей и рассеивающей линз. /Лаб/	3	6	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	2	
4.5	Уравнения Максвелла /Ср/	3	10	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
	Раздел 5. ВОЛНОВАЯ ОПТИКА						
5.1	Интерференция света. Дифракция света. Поляризация света /Лек/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
5.2	Интерференция света. Дифракция света. Поляризация света /Пр/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
5.3	Интерференция света. Дифракция света. Поляризация света /Cp/	3	8	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
5.4	Квантовая теория электромагнитного излучения /Лек/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
5.5	Квантовая теория электромагнитного излучения /Пр/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
5.6	Квантовая теория электромагнитного излучения /Cp/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
	Раздел 6. КВАНТОВАЯ ФИЗИКА						
6.1	Основы квантовой механики /Лек/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
6.2	Основы квантовой механики /Пр/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
6.3	Основы квантовой механики /Cp/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	

	Раздел 7. СТРОЕНИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА						
7.1	Модель атома Резерфорда-Бора /Лек/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.2	Модель атома Резерфорда-Бора /Ср/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.3	Квантово-механическая модель атома /Лек/	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.4	Квантово-механическая модель атома /Ср/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.5	Оптические квантовые генераторы Спонтанное и индуцированное излучение. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров и их применение.	3	2	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.6	/Лек/ Оптические квантовые генераторы Спонтанное и индуцированное излучение. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров и их применение.	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.7	/Ср/ Элементы ядерной физики /Ср/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.8	Защита лабораторных работ /Лаб/	3	4	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.9	/КаттЭ/	3	0,3	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	
7.10	/Экзамен/	3	35,7	ОПК-1.1 ОПК-1.2 ОПК-1.5 ОПК-1.7	Л1.1Л2.1 Л2.2Л3.1 Л3.2 Л3.3 Л3.4 Э1	0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Вопросы к промежуточной аттестации

Первый курс. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7 1. Предмет механики. Механическое движение и его относительность. Система отсчета. Материальная точка и способы

задания ее положения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7

- 2. Способы описания движения материальной точки. Кинематическое уравнение движения. Траектория. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 3. Вектор перемещения. Путь. Скорость и ускорение материальной точки. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 4. Ускорение нормальное, тангенциальное и полное. Единицы ускорения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 5. Инерциальные системы отсчета. Формулировка первого закона Ньютона. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 6. Сила как мера механического действия. Виды сил в механике. Принцип независимости действия сил. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 7. Четыре типа фундаментальных взаимодействий. Сила тяжести. Вес тела. Сила трения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК -1.5, ОПК-1.7
- 8. Инертные свойства материи. Масса. Импульс материальной точки. Основной закон динамики материальной точки (второй закон Ньютона). ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 9. Третий закон Ньютона. Система материальных точек. Центр масс и закон его движения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 10. Преобразования Галилея. Механический принцип относительности Галилея. Границы применимости классической механики. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 11. Постулаты специальной теории относительности. Преобразования Лоренца. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 12. Относительность длин и промежутков времени. Интервал между двумя событиями. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 13. Понятие о релятивистской динамике. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 14. Механическая система. Центр масс и закон его движения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 15. Энергия как мера различных форм движения материи. Энергия потенциальная и кинетическая. ОПК-1.1, ОПК-1.2, ОПК -1.4, ОПК-1.5, ОПК-1.7
- 16. Работа как мера измерения энергии. Работа постоянной и переменной силы. Мощность. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5. ОПК-1.7
- 17. Вращательное движение абсолютно твердого тела. Кинематические характеристики вращательного движения (угол поворота, угловая скорость, угловое ускорение). ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 18. Вращательное движение абсолютно твердого тела. Момент силы. Момент импульса. Закон изменения момента импульса. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 19. Момент инерции механической системы относительно неподвижной оси. Примеры расчета момента инерции. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 20. Основной закон динамики вращательного движения твердого тела вокруг неподвижной оси. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 21. Закон сохранения импульса. Абсолютно неупругий удар. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 22. Закон сохранения механической энергии. Абсолютно упругий удар. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 23. Движение тел переменной массы. Уравнение Мещерского. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 24. Реактивное движение. Уравнение Циолковского. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 25. Закон сохранения момента импульса. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 26. Гироскоп. Прецессия гироскопа. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 27. Колебательные процессы. Виды колебаний. Механические колебания. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 28. Гармонические механические колебания. Дифференциальное уравнение гармонических колебаний и его решение. ОПК -1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 29. Пружинный маятник. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 30. Математический маятник. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 31. Физический маятник. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 32. Затухающие механические колебания. Дифференциальное уравнение затухающих колебаний. Характеристики затухания. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 33. Вынужденные механические колебания. Резонанс. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 34. Понятие о НИСО, их виды. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 35. Основное уравнение динамики для НИСО. Силы инерции. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 36. Гравитационное взаимодействие. Закон всемирного тяготения Ньютона. Напряженность и потенциал гравитационного поля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 37. Предмет молекулярной физики. Термодинамики и статической физики. Статический и термодинамический методы исследования. Термодинамические системы. Термодинамические параметры и процессы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 38. Атомная и молекулярная масса. Моль и число Авогадро. Молярная масса. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 39. Идеальный газ. Уравнение состояния идеального газа. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 40. Идеальный газ. Изопроцессы идеальных газов. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Графическое изображение изопроцессов. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 41. Основное уравнение молекулярно-кинетической теории. Средняя квадратичная скорость. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 42. Статическая физика. Распределение Максвелла молекул газа по скоростям. Средняя арифметическая, средняя квадратичная и наиболее вероятная скорости. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 43. Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7

- 44. Число степеней свободы молекулы. Поступательные, вращательные и колебательные степени свободы. Закон равномерного распределения энергии по степеням свободы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 45. Внутренняя энергия идеального газа. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 46. Классическая теория теплоемкости идеальных газов. Закон Дюлонга-Пти. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 47. Внутренняя энергия системы. Работа и теплота, как способы обмена энергией между макроскопическими системами. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 48. Первое начало термодинамики, его формулировка и аналитическое выражение. Работа и теплота как мера измерения энергии. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 49. Элементарная работа расширения газов. Работа расширения при конечном изменении объема и ее графическое изображение. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 50. Теплоёмкость вещества. Удельная и молярная теплоемкости. Теплоёмкость при постоянном объеме и при постоянном давлении. Связь этих теплоёмкостей. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 51. Применение первого закона термодинамики к изопроцессам идеальных газов. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 52. Адиабатный и политропный процесс идеальных газов. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 53. Обратимые и необратимые процессы. Примеры необратимых процессов. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 54. Круговые процессы. Прямой и обратный циклы Карно. Тепловые двигатели и холодильные машины. ОПК-1.1, ОПК-1.2, ОПК-1.5, ОПК-1.5, ОПК-1.7
- 55. Второе начало термодинамики и его различные формулировки. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 56. Понятие энтропии. Статистический смысл второго начала термодинамики. Границы применимости второго начала термодинамики. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 57. Реальные газы. Изотермы реального газа. Критическое состояние. Критические параметры. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 58. Уравнение Ван-дер-Ваальса. Изотермы газа Ван-дер-Ваальса. Метастабильное состояние вещества. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 59. Свойства жидкостей. Поверхностное натяжение. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 60. Смачивание. Формула Лапласа. Капиллярные явления. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7

Второй курс

- 1. Электрический заряд. Дискретность заряда. Закон сохранения электрического заряда. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 2. Закон Кулона. Линейная, поверхностная и объемная плотности заряда. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 3. Напряженность электрического поля. Графическое изображение электростатического поля. Принцип суперпозиции электрических полей. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 4. Электрический диполь. Дипольный электрический момент. Электростатическое поле электрического диполя в вакууме. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 5. Применение теоремы Остроградского-Гаусса к расчету электростатических полей в вакууме. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 6. Диэлектрики. Поляризация диэлектриков и её виды. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 7. Проводники в электрическом поле. Электростатическая защита. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 8. Электрическая ёмкость проводника, единицы её измерения. Ёмкость проводящей сферы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5. ОПК-1.7
- 9. Конденсаторы. Ёмкость плоского, цилиндрического, сферического конденсатора. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 10. Соединение конденсаторов в батарею. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 11. Энергия электрического поля. Плотность энергии электрического поля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 12. Понятие об электрическом токе и условия его возникновения. Характеристики электрического тока. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 13. Электрическое напряжение. ЭДС источника тока. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 14. Закон Ома для однородного участка цепи в дифференциальной и интегральной формах. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 15. Закон Ома для неоднородного участка цепи и для замкнутой цепи. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 16. Сопротивление металлического проводника и его зависимость от температуры. Виды соединений проводников. ОПК-
- 1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 17. Работа и мощность тока. КПД источника тока. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 18. Закон Джоуля-Ленца в дифференциальной и интегральной формах. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 19. Правила Кирхгофа для расчета сложных электрических цепей. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 20. Ток в электролитах. Законы Фарадея для электролиза. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 21. Ионизация газов. Ток в газах. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 22. Несамостоятельный газовый разряд. Самостоятельный разряды и его типы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК -1.7
- 23. Понятие о плазме. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 24. Магнитное поле. Опыты Ампера и Эрстеда. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 25. Индукция и напряженность магнитного поля; связь между ними. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 26. Линии магнитной индукции. Магнитный поток. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 27. Принцип суперпозиции магнитных полей. Теорема Гаусса для магнитного поля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5,

ОПК-1.7

- 28. Закон Био-Савара-Лапласа. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 29. Применение закона Био-Савара-Лапласа для расчета поля отрезка проводника с током и бесконечного проводника с током. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 30. Применение закона Био-Савара-Лапласа для расчета поля кругового тока. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 31. Вихревой характер магнитного поля. Теорема о циркуляции вектора магнитной индукциии её применение для расчета магнитного поля соленоида. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 32. Сила Ампера и её применения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 33. Сила Лоренца и её применение. Эффект Холла. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 34. Работа магнитного поля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 35. Электромагнитная индукция. Опыты Фарадея. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 36. Закон Фарадея для электромагнитной индукции. Правило Ленца. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 37. Вихревые токи. Скин-эффект. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 38. Самоиндукция. Взаимная индукция. Индуктивность. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 39. Законы изменения тока при замыкании и размыкании цепей, содержащих индуктивность. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 40. Энергия магнитного поля. Плотность энергии магнитного поля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 41. Магнитный момент атома. Атом в магнитном поле. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 42. Намагниченность. Магнитная проницаемость. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 43. Классификация веществ по магнитным свойствам. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 44. Диа- и парамагнетизм. Ферромагнетики. Природа ферромагнетизма. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 45. Основы теории Максвелла для электромагнитного поля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 46. Колебательный контур. Собственные электрические колебания в контуре, их дифференциальное уравнение и его решение. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 47. Затухающие электрические колебания, их дифференциальное уравнение и его решение. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 48. Затухающие электрические колебания. Характеристики затухания. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 49. Вынужденные электрические колебания, их дифференциальное уравнение и его решение. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5. ОПК-1.7
- 50. Переменный ток. Индуктивность и ёмкость в цепи переменного тока. Электрический резонанс. ОПК-1.1, ОПК-1.2, ОПК -1.4. ОПК-1.5. ОПК-1.7
- 51. Уравнение плоской электромагнитной волны. Характеристики волны. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 52. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 53. Перенос энергии электромагнитной волной. Вектор Умова-Пойнтинга. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 54. Физические основы излучения и приёма электромагнитных волн. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 55. Шкала электромагнитных волн. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 56. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 57. Отражение и преломление электромагнитных волн на границе раздела двух диэлектрических сред. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 58. Линза. Тонкая линза. Построение изображений в тонкой линзе. Центрированная оптическая система. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 59. Принцип суперпозиции волн. Когерентность волн. Интерференция волн. Оптическая разность хода волн. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 60. Способы получения когерентных источников. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 61. Расчёт интерференционной картины от двух когерентных источников. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 62. Интерференция света в тонких плёнках. Просветление оптики. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 63. Дифракция волн. Принцип Гюйгенса-Френеля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 64. Метод зон Френеля. Дифракция на щели. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 65. Дифракция Фраунгофера в параллельных лучах на щели и круглом отверстии. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 66. Дифракционная решётка. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 67. Естественный и поляризованный свет. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 68. Получение поляризованного света при отражении и преломлении в диэлектриках. Закон Брюстера. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 69. Получение поляризованного света при двойном лучепреломлении. Призма Николя. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 70. Поляризаторы и анализатора. Закон Малюса. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 71. Вращение плоскости поляризации поляризованного света оптически активными веществами. Применение поляризованного света. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 1 Взаимодействие электромагнитных волн с веществом. Закон поглощения света. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 2 Оптически неоднородные среды. Явление рассеяния света. Закон Релея. Дисперсия света. Области нормальной и аномальной дисперсии. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 3 Излучение Вавилова-Черенкова. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7

- 4 Тепловое излучение и его характеристики. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 5 Законы излучения чёрного тела. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 6 Квантовая теория излучения. Формула Планка. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 7 Понятие об оптической пирометрии. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 8 Явление фотоэлектрического эффекта и его законы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 9 Виды фотоэффекта. Уравнение Эйнштейна. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- Применение внешнего фотоэффекта. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 11 Люминесценция. Правило Стокса. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 12 Масса и импульс фотона. Давление света. Опыты Лебедева. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 13 Эффект Комптона и его теория. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 14 Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 15 Опыты Резерфорда по рассеянию альфа-частиц веществом. Ядерная модель атома Резерфорда. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 16 Линейчатый спектр атома водорода. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 17 Постулаты Бора и их экспериментальное подтверждение. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 18 Теория Бора для водородоподобных систем (расчёт радиуса орбиты электрона, скорости движения электрона по орбите и энергии электрона на орбите. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 19 Внутренняя логическая противоречивость теории Бора и её затруднения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 20 Корпускулярно-волновая двойственность свойств частиц вещества. Формула де Бройля. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 21 Соотношения неопределённостей Гейзенберга. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 22 Волновая функция. Уравнение Шрёдингера. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 23 Применение стационарного уравнения Шредингера для одномерного движения свободной частицы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 24 Электрон в потенциальном «ящике». Принцип соответствия Бора. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 25 Туннельный эффект (прохождение частицы сквозь потенциальный барьер). ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 26 Стационарное уравнение Шредингера для водородоподобного атома и результаты его решения. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 27 Пространственное квантование. Спин электрона. Принцип Паули. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 28 Распределение электронов в атоме по состояниям. Оболочки и подоболочки. Орбитали. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 29 Периодическая система элементов Д.И. Менделеева. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 30 Испускание и поглощение света. OПК-1.1, OПК-1.2, OПК-1.4, OПК-1.5, OПК-1.7
- 31 Спонтанное и индуцированное излучения. Инверсная населенность уровней. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 32 Квантовые генераторы. Лазер и его основные элементы. Типы лазеров. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- Основные характеристики и свойства лазерного излучения. Применение лазеров. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 34 Твёрдые тела. Моно- и поликристаллы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 35 Кристаллическая решетка и её виды. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 36 Дефекты в кристаллах. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 37 Классификация кристаллов по типу связи. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 38 Теплоёмкость кристалла. Закон Дюлонга и Пти. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 39 Функции распределения для невырожденного и вырожденного газа (распределение Максвелла-Больцмана и Ферми-Дирака). ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 40 Уровень Ферми. Энергия Ферми. Влияние температуры на распределение Ферми-Дирака. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 41 Исходные представления зонной теории твёрдых тел. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 42 Изменение состояния электронов при сближении атомов и образование энергетических зон. Структура энергетических зон. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 3аполнение зон электронами и деление тел на проводники, полупроводники и изоляторы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 44 Общие сведения о полупроводниках. Зависимость сопротивления полупроводников от температуры. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 45 Собственные полупроводники. Электронно-дырочная проводимость. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК -1.7
- 46 Примесные полупроводники. Донорные и акцепторные примеси. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 47 Электронно-дырочный переход (р-п переход и его свойства. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 8 Вольт-амперная характеристика р-п перехода. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 65. Полупроводниковый диод и его использование в выпрямителях. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 66. Состав и характеристики атомных ядер. Изотопы. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 67. Взаимодействие нуклонов ядра. Понятие о ядерных силах. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7

- 68. Дефект массы и его энергия связи нуклонов в ядре. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 69. Радиоактивный распад. Виды радиоактивного распада. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 70. Закон радио¬активного распада. Правила смещения при \Box и β распадах. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 71. Природа и свойства □-, β-, γ- излучений. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 72. Взаимодействие \square , β , γ излучений с веществом. Защита от радиоактивных излучений. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 73. Закон поглощения радиоактивных излучений. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 74. Ядерные реакции и их классификация. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 75. Реакция деления ядра. Цепная ядерная реакция. Критическая масса и коэффициент размножения нейтронов. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 76. Управляемая реакция деления ядер. Ядерный реактор. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 77. Реакция синтеза ядер. Проблемы управляемых термоядерных реакций. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7
- 78. Элементарные частицы и их классификация. Уровень элементарных частиц. Понятие о кварках. ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК-1.5, ОПК-1.7

5.2. Текущий контроль и контроль СРС

Текущий контроль и контроль СРС проводится по результатам защиты лабораторных работ

5.3. Критерии выставления оценки студенту

Оценка «5» (отлично) ставится если: полно раскрыто содержание материала билета: исчерпывающие и аргументированные ответы на вопросы в билете; материал изложен грамотно, в определенной логической последовательности, не требует дополнительных пояснений, точно используется терминология; демонстрируются глубокие знания дисциплины (модуля); даны обоснованные ответы на дополнительные вопросы.

Оценка «4» (хорошо) ставится, если: ответы на поставленные вопросы в билете излагаются систематизировано и последовательно; демонстрируется умение анализировать материал, однако не все выводы носят аргументированный и доказательный характер, в изложении допущены небольшие пробелы (неточности), не исказившие содержание ответа; материал излагается уверенно, в основном правильно даны все определения и понятия; при ответе на дополнительные вопросы полные ответы даны только при помощи наводящих вопросов.

Оценка «3» (удовлетворительно) ставится, если: неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала; имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, исправленные после замечаний преподавателя; при неполном знании теоретического материала выявлена недостаточная сформированность компетенций, умений и навыков, студент не может применить теорию в новой ситуации.

Оценка «2» (неудовлетворительно) ставится, если: не раскрыто основное содержание учебного материала; обнаружено незнание или непонимание большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких замечаний преподавателя; нарушена логика в изложении материала, нет необходимых обобщений и выводов; недостаточно сформированы навыки письменной речи; работа является плагиатом других работ более чем на 90%.

Оценка «зачтено» выставляется студенту, если он знает материал, грамотно и по существу излагает его, не допуская существенных неточностей. В ответе могут быть допущены неточности или незначительные ошибки, исправленные студентом в ходе ответа на дополнительные вопросы преподавателя.

Оценка «не зачтено» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями выполняет практические работы.

5.4. Форма промежуточной аттестации

Промежуточная аттестация по результатам семестра по дисциплине проходит в форме зачета и экзамена. Контроль за усвоением теоретических знаний и практических навыков (текущий контроль) осуществляется преподавателями при проверке умения анализировать научные теории, аргументировано отстаивать свою точку зрения; в ходе решения практических заданий, ситуационных задач, при защите докладов на практических занятиях, дебатов, проверке самостоятельной работы студента.

Фонд оценочных средств разработан и утвержден протоколом заседания кафедры.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
	6.1. Рекомендуемая литература					
	6.1.1. Основная литература					
	Авторы, составители	Заглавие	Издательство, год			
Л1.1	Коростелев, Ю.С.	Физика: учебное пособие: в 2 ч. / Ю.С. Коростелев, А.В. Куликова, А.В. Пашин [Электронный ресурс]: Режим доступа URL: http://biblioclub.ru/index.php? page=book&id=438319	Самара: Самарский государственный архитектурно-строительный университет, , 2014			
6.1.2. Дополнительная литература						
	Авторы, составители	Заглавие	Издательство, год			

	Авторы, составители	Заглавие	Издательство, год		
Л2.1	Бутиков, Е.И.	Физика: учебное пособие / Е.И. Бутиков, А.С. Кондратьев. [Электронный ресурс].: Режим доступа URL: http://biblioclub.ru/index.php?page=book&id=75492	Москва : Физматлит,, 2008		
Л2.2	Леденев, А.Н.	Физика: учебное пособие / А.Н. Леденев. [Электронный ресурс]: Режим доступа URL: http://biblioclub.ru/index.php? page=book&id=69231	Москва : Физматлит, , 2005		
		6.1.3. Методические разработки	•		
	Авторы, составители	Заглавие	Издательство, год		
	6.2. Переч	ень ресурсов информационно-телекоммуникационной сети	"Интернет"		
Э1	Электронно-библиотеч	Электронно-библиотечная система "Университетская библиотека онлайн"			
		6.3.1 Перечень программного обеспечения			
6.3.1.1	ΠΟ WicrosoftWindows 1	0 PRO			
6.3.1.2	ПО Wicrosoft Office 2021 для дома и учебы				
6.3.1.3	Специализированное ПО				
		6.3.2 Перечень информационных справочных систем			
6.3.2.1	Справочно – правовая	Справочно – правовая система «Гарант»			
6.3.2.2	1. www.http://biblioclul	1. www.http://biblioclub.ru/ - Электронно-библиотечная система "Университетская библиотека онлайн";			
6.3.2.3	2. www.elibrary.ru – на	2. www.elibrary.ru – научная электронная библиотека;			
6.3.2.4					
6.3.2.5	4. https://uisrussia.msu.	4. https://uisrussia.msu.ru - Университетская информационная система «Россия».			
6.3.2.6	Профессиональные базы данных:				

6.3.2.7	http://www.tehlit.ru/ ТехЛит библиотека	
6.3.2.8	http://economy.gov.ru/minec/about/systems/infosystems/ База данных Минэкономразвития РФ «Информационные системы Министерства в сети Интернет»	
6.3.2.9	raai.org – Российская Ассоциация искусственного интеллекта	
6.3.2.1	http://www.raasn.ru/index.php Российская академия архитектуры и строительных наук (PAACH)	
6.3.2.1	http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html - База данных Термические константы веществ	
6.3.2.1		

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)				
7.1	Учебная аудитория №1: Мультимедийное оборудование, проектор, учебная доска Комплект учебно-			
	наглядных материалов, пакет презентаций, видеофильмы, шкафы, учебные пособия, стенды, учебные			
	столы, стулья, рабочее место педагога, телевизор, ноутбук			
7.3	Лабораторные стенды для:			
7.4	1.Исследования движения тела, катящегося без скольжения по наклонной плоскости»			
7.5	2. Изучения свободных колебаний математического маятника			
7.6	3. Определения ускорения свободного падения с помощью математического маятника			
7.7	4.Определения скорости снаряда с помощью физического маятника			
7.8	5. Проверки основного закона динамики вращательного движения на маятнике Обербека			
7.9	6.Определения момента инерции твёрдых тел с помощью трифилярного подвеса			
7.10	7.Определения момента инерции физического маятника			
7.11	8. Изучения явления механического резонанса			
7.12	9. Изучения падения тел в вязкой среде			
7.13	10.Определения отношения теплоёмкостей воздуха методом адиабатического расширения			
7.14	11.Определения эффективного диаметра молекул воздуха методом отрыва капель			
7.15	12.Определения поверхностного натяжения жидкостей			

7.35	Лабораторные стенды для:
7.36	1.Определения показателя преломления жидкостей (оборудование: рефрактометры, жидкости с различными коэффициентами преломления)
7.37	2. Измерения показателя преломления для плоскопараллельной пластинки
7.38	3. Измерения показателя преломления трёхгранной призмы с помощью четырёх иголок
7.39	4.Определения главных фокусных расстояний собирающей и рассеивающей линз (оборудование: оптическая скамья, осветитель, наборы линз)
7.40	5.Определения длины волны лазера с помощью дифракционной решётки (оборудование: осветитель, оптическая скамья, лазер, дифракционные решетки)
7.41	6.Изучения дифракции Фраунгофера на одной щели (оборудование: оптическая скамья, осветитель, щели, экраны)
7.42	7.Изучения явления интерференции света и определение параметров бипризмы Френеля по интерференционной картине (оборудование: оптическая скамья, осветитель, бипризма, экраны)
7.43	8.Определения концентрации сахара в растворе с помощью поляриметра (оборудование: поляриметр, растворы, трубки для поляриметра)
7.44	9.Изучения законов теплового излучения и проверка закона Стефана-Больцмана для лампы накаливания (оборудование: оптическая скамья, источник (лампа накаливания), монохроматор МУМ)
7.45	10.Определения постоянной Стефана-Больцмана методом оптической пирометрии (оборудование: пирометр, источники теплового излучения)
7.46	11.Определения постоянной Ридберга и массы электрона
7.47	12.Исследования поглощения β-излучения веществом (оборудование: дозиметр, образцы солей калия, пластины из различных материалов)

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Глоссарий

Адиаба́та (от греч. adiabatos – непереходимый), линия на термодинамической диаграмме состояния, изображающая равновесный адиабатический процесс.

Ано́д (от греч. anodos – движение вверх), 1) электрод электронного или ионного прибора, соединяемый с положительным полюсом источника; 2) положительный электрод источника электрического тока (гальванического элемента, аккумулятора); 3) положительный электрод электрической дуги.

Áтом (от греч. atomos – неделимый), часть вещества микроскопических размеров и массы (микрочастица), наименьшая часть хим. элемента, являющаяся носителем его свойств.

Ва́куум (от лат. vacuum – пустота), состояние газа при давлении меньше атмосферного.

Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию.

Гироско́п (от греч. gyros – круг, gyreuo – кружусь, вращаюсь и skopeo – смотрю, наблюдаю), быстро вращающееся симметричное твёрдое тело, ось вращения которого (ось симметрии) может изменять своё направление в пр-ве.

Давле́ние — физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого (например, фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень).

Диамагнетик – вещество, намагничивающееся во внешнем магнитном поле напряжённостью Н в направлении, противоположном направлению Н. В отсутствии внешнего магнитного поля диамагнетик немагнитен.

 $\overline{\text{Д}}$ ина́мика (от греч. dynamis — сила), раздел механики, посвящённый изучению движения материальных тел под действием приложенных к ним сил.

Дипо́ль (от греч. di – приставка, означающая дважды, двойной, и polos – полюс) электрический, совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

Диэле́ктрик (англ. dielectric, от греч. dia – через, сквозь и англ. electric – электрический), вещество, плохо проводящие электрический ток.

Измере́ние – последовательность экспериментальных и вычислительных операций, осуществляемая с целью нахождения значения физической величины, характеризующей некоторый объект или явление.

Изоба́рный проце́сс (др.-греч. ἴσος «одинаковый» и βάρος «тяжесть») – термодинамический процесс, происходящий в системе при постоянном давлении.

Изотерми́ческий процесс (от др.-греч. ἴσος «равный» и θέρμη «жар») – термодинамический процесс, происходящий в физической системе при постоянной температуре.

Изохо́рный процесс (от др.-греч. ἴσος – «равный» и χώρος – «место») – термодинамический процесс, который происходит при постоянном объёме.

Импульс – (от лат. impulsus – удар, толчок), то же, что количество движения.

Индукти́вность – (от лат. inductio – наведение, побуждение), величина, характеризующая магнитные свойства электрической цепи.

Инертность (от лат. inertia – бездействие) – свойство тела, которое заключается в том, что для изменения его скорости при взаимодействии с любыми другими телами требуется некоторое время.

Инерция (от лат. inertia – бездействие) – физическое явление сохранения телом покоя или движения при отсутствии действия внешних тел.

Като́д (от греч. kathodes – ход вниз, возвращение; термин предложен англ. физиком М. Фарадеем в 1834). 1) отрицательный электрод электровакуумного или газоразрядного прибора; 2) отрицательный электрод источника тока (гальванического элемента, аккумулятора и др.); 3) электрод электролитической ванны, электрической дуги и др. подобных устройств, присоединяемый к отрицательному полюсу источника тока.

Кинема́тика – (от греч. kinema, род. п. kinematos – движение), раздел механики, посвящённый изучению движений тел, без учёта действующих на них сил.

Колебания – движения или процессы, обладающие той или иной степенью повторяемости во времени.

Конденса́ция – (от позднелат. condensatio – уплотнение, сгущение), переход вещества вследствие его охлаждения или сжатия из газообразного состояния в конденсированное (жидкое или твёрдое).

Механика – (от греч. mechanike (techne) – наука о машинах, искусство построения машин), наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними.

Моле́кула – (новолат. molecule, уменьшит. от лат. moles – масса), наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединённых между собой химическими связями.

Нейтрон – (англ. neutron, от лат. neuter – ни тот, ни другой), электрически нейтральная элементарная частица.

Оптика – (греч. optike – наука о зрительных восприятиях, от optos – видимый, зримый), раздел физики, в котором изучаются оптическое излучение (свет), процессы его распространения и явления, наблюдаемые при взаимодействии света и вещества.

Осцилля́тор – (от лат. oscillo – качаюсь), физическая система, совершающая колебания.

Солено́ид – (от греч. solen – трубка и eidos – вид), свёрнутый в спираль изолированный проводник, по которому течёт электрический ток.

Фото́н – (от греч. phos, род. падеж photos – свет), элем. частица, квант электромагнитного излучения (в узком смысле – света).

Электро́н – (от греч. ēlektron – янтарь) – мельчайшая элементарная частица вещества, имеющая отрицательный электрический заряд.

Элемента́рные частицы – мельчайшие известные частицы физической материи. Представления об элементарных частицах отражают ту степень в познании строения материи, которая достигнута современной наукой. Характерная особенность элементарных частиц – способность к взаимным превращениям.

Эне́ргия – (от греч. energeia – действие, деятельность), общая количеств. мера движения и взаимодействия всех видов материи. Определяет способность тела совершить работу.

Энтропия – (от греч. entropia – поворот, превращение), понятие, впервые введённое в термодинамике для определения меры необратимого рассеяния энергии.

Я́дро а́томное – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом.

Комплексное изучение предлагаемой студентам учебной дисциплины предполагает овладение материалами лекций, учебника, творческую работу студентов в ходе проведения семинарских занятий, а также систематическое выполнение тестовых и иных заданий для самостоятельной работы студентов.

В ходе лекций раскрываются основные вопросы в рамках рассматриваемой темы, делаются акценты на наиболее сложные и интересные положения изучаемого материала, которые должны быть приняты студентами во внимание. Материалы лекций являются основой для подготовки студента к семинарским занятиям.

Основной целью семинарских и практических занятий является контроль за степенью усвоения пройденного материала, ходом выполнения студентами самостоятельной работы и рассмотрение наиболее сложных и спорных вопросов в рамках темы занятия. Ряд вопросов дисциплины, заслушиваются на семинарских занятиях в форме подготовленных студентами сообщений (10-15 минут) с последующей их оценкой всеми студентами группы.

Практические занятия проводятся по материалам лекций, печатных изданий, электронных источников. Предусмотрено проведение индивидуальной работы (консультаций) со студентами в ходе изучении материала данной дисциплины.

СПЕЦИАЛЬНЫЕ УСЛОВИЯ ИНВАЛИДАМ И ЛИЦАМ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Специальные условия обучения и направления работы с инвалидами и лицами с ограниченными возможностями здоровья (далее - обучающиеся с ограниченными возможностями здоровья) определены на основании:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Федерального закона от 24.11.1995 № 181-ФЗ «О социальной защите инвалидов в Российской Федерации»;
- приказа Минобрнауки России от 05.04.2017 № 301 «Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры»;
- методических рекомендаций по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса, утвержденных Минобрнауки России 08.04.2014 № АК-44/05вн).

Под специальными условиями для получения образования обучающихся с ограниченными возможностями здоровья понимаются условия обучения, воспитания и развития таких обучающихся, включающие в себя использование при необходимости адаптированных образовательных программ и методов обучения и воспитания, специальных учебников, учебных пособий и дидактических материалов, специальных технических средств обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего необходимую помощь, проведение групповых и индивидуальных коррекционных занятий, обеспечение доступа в здания вуза и другие условия, без которых невозможно или затруднено освоение образовательных программ обучающихся с ограниченными возможностями здоровья.

Обучение в рамках учебной дисциплины обучающихся с ограниченными возможностями здоровья осуществляется университетом с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

Обучение по учебной дисциплине обучающихся с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах.

В целях доступности обучения по дисциплине обеспечивается:

- 1) для лиц с ограниченными возможностями здоровья по зрению:
- наличие альтернативной версии официального сайта института в сети «Интернет» для слабовидящих;
- весь необходимый для изучения материал, согласно учебному плану (в том числе, для обучающихся по индивидуальным учебным планам) предоставляется в электронном виде на диске.
- индивидуальное равномерное освещение не менее 300 люкс;
- присутствие ассистента, оказывающего обучающемуся необходимую помощь;
- обеспечение возможности выпуска альтернативных форматов печатных материалов (крупный шрифт или аудиофайлы);
- обеспечение доступа обучающегося, являющегося слепым и использующего собаку-проводника, к зданию университета.
- 2) для лиц с ограниченными возможностями здоровья по слуху:
- наличие микрофонов и звукоусиливающей аппаратуры коллективного пользования (аудиоколонки);
- 3) для лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата, материальнотехнические условия должны обеспечивать возможность беспрепятственного доступа обучающихся в учебные помещения, столовые, туалетные и другие помещения организации, а также пребывания в указанных помещениях (наличие пандусов, поручней, расширенных дверных проемов и других приспособлений).

Перед началом обучения могут проводиться консультативные занятия, позволяющие обучающимся с ограниченными возможностями адаптироваться к учебному процессу.

В процессе ведения учебной дисциплины профессорско-преподавательскому составу рекомендуется использование социально-активных и рефлексивных методов обучения, технологий социокультурной реабилитации с целью оказания помощи обучающимся с ограниченными возможностями здоровья в установлении полноценных межличностных отношений с другими обучающихся, создании комфортного психологического климата в учебной группе. Особенности проведения текущей и промежуточной аттестации по дисциплине для обучающихся с ограниченными возможностями здоровья устанавливаются с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и другое). При необходимости предоставляется дополнительное время для подготовки ответа на экзамене (зачете).